GROUNDING CONSIDERATIONS FOR INDUSTRIAL POWER SYSTEMS

Matt McBurnett of VI Engineering

2010 Industry Applications Society Annual Meeting - Houston, TX
October 3-7, 2010
Contact Information

VI Engineering, LLC
www.viservices.com
Main: 281-271-8374
Facsimile: 281-754-4689

Matt McBurnett, P.E.
Matt.McBurnett@viservices.com
Direct: 281-271-8377
Mobile: 281-536-5494
System Failures on Industrial Power Systems

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Percentage of Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line to Ground</td>
<td>98%</td>
</tr>
<tr>
<td>Phase to Phase</td>
<td>< 1.5%</td>
</tr>
<tr>
<td>*Three Phase</td>
<td>< 0.5%</td>
</tr>
</tbody>
</table>

Most three phase faults are man-made: i.e. accidents caused by improper operating procedure.
First Half Agenda - System Grounding

• What is a ground fault?
• What happens in an ungrounded system?
• What happens in a solidly grounded system?
• Application of resistance grounding
• Resistance grounding and generators
What is a Ground Fault?

- Contact between ground and an energized conductor

- Unleashes large amount of electrical energy

- Dangerous to equipment and people
Definitions

- **System Grounding** – An *intentional* ground on the system
- **Resistance Grounding** – A type of grounding using a resistor in the neutral (system or derived) to limit available fault current
- **Ground Fault Protection** – Detection of an *unintentional* ground on the system and taking appropriate action
Two Types of Faults

Bolted Faults

- Solid connection between two phases or phase and ground resulting in high fault current.
- Stresses are well contained so fault creates less destruction.

Arc Faults

- Usually caused by insulation breakdown, creating an arc between two phases or phase to ground.
- Intense energy is not well contained, and can be very destructive.
600 Volt “THHN” Power Cable
Neutral grounding means a permanent and continuous conductive path to the earth with sufficient ampacity to carry any fault current liable to be imposed on it, sufficiently low impedance to limit the voltage rise above ground and to facilitate the operation of the protective devices in the circuit.
System Grounding Methods

• Ungrounded
• Solidly Grounded
• Impedance Grounded
 ▫ Low Resistance Grounded
 ▫ High Resistance Grounded
 ▫ Reactance Grounded
Ungrounded Systems

Popular in 3-wire LV systems up to 1950s

• Advantages
 ▫ Negligible fault current on first ground fault
 ▫ No tripping on first ground fault

• Disadvantages
 ▫ Difficult to locate ground faults
 ▫ 5 to 6 times transient over-voltage on intermittent, sputtering arcing ground faults
Industry Recommendations

IEEE Std 242-2001 (Buff Book)
Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems

Ungrounded Systems

8.2.5 If this ground fault is intermittent or allowed to continue, the system could be subjected to possible severe over-voltages to ground, which can be as high as six to eight times phase voltage. Such over-voltages can puncture insulation and result in additional ground faults. These over-voltages are caused by repetitive charging of the system capacitance or by resonance between the system capacitance and the inductance of equipment in the system.
Ungrounded Systems

- Unintentionally grounded through **system** capacitance
 - Such as cables, transformers, motors, surge suppressors, etc.

![Diagram of Ungrounded Systems]

480V Delta Source

\[\approx 277V\]

Ground \(\approx 0V \)
Ground Faults

- Ground fault current distribution (minimal current)

Ground \approx AØ
Arcing Ground Faults
Intermittent or Re-strike

- **Intermittent ground fault:** A re-striking ground fault can create a high frequency oscillator (RLC circuit), independent of L and C values, causing high transient over-voltages.
 - i.e. re-striking due to ac voltage waveform or loose wire caused by vibration
 - OCPDs do not trip because ground fault current is low due to high value of R_f.
Arcing Ground Faults
Intermittent or Re-strike

- Plot of transient over-voltage for an arcing ground fault
Locating Ground Faults

• Good luck!
 ▫ No direct return to source, only way is through system capacitance.

• Use over-voltage
 ▫ Indicator light and relay method to indicate ground fault.
 ▫ De-energize one feeder at a time.
 • Very time consuming and dangerous!
 • Unknown ground fault may be on system for long period of time.
 • May de-energize vital equipment trying to find fault.
Solidly Grounded Systems

Popular in 4-wire LV systems since 1950s

- **Advantages**
 - Eliminated transient over-voltage problem
 - Permit line-to-neutral loads (lighting, heating cables)
 - Ground faults easy to locate (follow smoke)

- **Disadvantages**
 - Cause unscheduled service interruption
 - Danger from low-level arcing ground faults
 - Strong shock hazard to personnel
 - Coordination Issues
 - Arc-flash issues
IEEE - Arcing Faults

- IEEE Std 242-2001
 Recommended Practice for the Protection and Coordination of Industrial and Commercial Power Systems
 8.2.2
 One disadvantage of the solidly grounded 480 V system involves the high magnitude of destructive, arcing ground-fault currents that can occur.

- IEEE Std 141-1993
 Recommended Practice for Electric Power Distribution for Industrial Plants
 7.2.4
 The solidly grounded system has the highest probability of escalating into a phase-to-phase or three-phase arcing fault, particularly for the 480 and 600 V systems. The danger of sustained arcing for phase-to-ground fault...is also high for the 480 and 600 V systems, and low or near zero for the 208 V system. A safety hazard exists for solidly grounded systems from the severe flash, arc burning, and blast hazard from any phase-to-ground fault.
Bolted Ground Faults

Estimated Ground fault current distribution on AΦ

480V Wye Source

3Ø Load

Iₙ

~60kA

Estimated Total Fault Current

\[I_f = \left(\frac{1}{Z_{pu}} \right) * I_{fla} + (I_{cb} + I_{cc}) = \sim 0A \ (3A) \]

Example (2500kVA, 480V, Z = 5 %)

\[I_n = I_f = \left(\frac{1}{0.05} \right) * 3000A = \sim 60,000A \]
Arcing Ground Faults

Estimated Ground fault current distribution on AΦ

Estimated Total Fault Current

\[I_f = \left(\frac{1}{Z_{pu}} \right) \times I_{fla} \times 0.38 + (I_{cb} + I_{cc}) = \sim I_n \]

Example (2500kVA, 480V, Z = 5%)

\[I_n = I_f = \left(\frac{1}{0.05} \right) \times 3000A \times 0.38 = \sim 23kA \]
Hazards with Ungrounded / Solidly Grounded

• Ungrounded – Method used to ground first power systems
 ▫ Very large transient over-voltage conditions may exist.
 • Insulation not rated, therefore, hazard to personnel and equipment.
 ▫ Very difficult to locate ground fault.
 • Good chance of second ground fault on a different phase due to prolonged ground fault.

• Solidly-Grounded – Replaced Ungrounded Systems
 ▫ Very high ground fault currents.
 • Fault must be cleared, shutting down equipment.
 • Generators may not be rated for ground fault
 ▫ Tremendous amount of arc flash / blast energy.
 • Equipment and people are not rated for energy.
Resistance Grounding

Popular for 3-wire systems since 1970s

Advantages
- No transient over-voltages
- Easy fault location method
- No Arc Flash Hazards (with ground faults)
- No coordination issues; ground fault current is consistent
- May be possible to use higher gauge wires for grounding.

Disadvantages
- No directly connected line-to-neutral loads
- Personnel must be trained
- Requires different arrester ratings
- Requires higher cable insulation ratings
Resistance Grounding

Intentionally grounded through neutral resistor

Diagram showing a source connected to a neutral grounding resistor and a 3Ø load or network.
Low Resistance Grounding (LRG)

• Used on Medium Voltage
 ▫ Some 5kV systems
 ▫ Mainly 15kV systems

• System charging current may be too high for High Resistance Grounding (HRG)

• Ground Fault
 ▫ Current typically limited to 25 – 400A
 ▫ Typically Trip within 10 - 30 seconds to reduce damage
Duty Ratings for NGR’s

IEEE Std 32

Time Rating and Permissible Temperature Rise for Neutral Grounding Resistors

<table>
<thead>
<tr>
<th>Time Rating (On Time)</th>
<th>Temp Rise (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten Seconds (Short Time)</td>
<td>760°C</td>
</tr>
<tr>
<td>One Minute (Short Time)</td>
<td>760°C</td>
</tr>
<tr>
<td>Ten Minutes (Short Time)</td>
<td>610°C</td>
</tr>
<tr>
<td>Extended Time</td>
<td>610°C</td>
</tr>
<tr>
<td>Continuous</td>
<td>385°C</td>
</tr>
</tbody>
</table>

Duration Must Be Coordinated With Protective Relay Scheme
Low Resistance Grounding (LRG)

- Application Notes
 - Line-to-neutral voltage for Resistor
 - Line-to-line voltage for Grounding Transformer
 - Rated current
 - Consider change of resistance due to heat rise
 - Consider harmonics, leakage, etc.
 - Re-striking faults
 - Vented Enclosure type (NEMA vs. IEC)
 - Resistor must ‘breathe’
 - CTs and Relays
 - Neutral or Ground side of Resistor
Common options

- Enclosure rating
- Enclosure finish
- Current transformer
- Potential transformer
- Disconnect switch
- Entrance/exit bushings
- Elevating stand
- Seismic rating
- Hazardous area classification
- Third party certification
Cheat Code #1

- Resistor mass proportional to rated current, duty and temperature rise
- Shorter duration or higher temperature rise equates to lower cost

Resistor mass = \frac{\text{Watt \cdot seconds}}{\Delta T \cdot C_p}
High Resistance Grounding

• How does HRG improve safety and reliability?
 ▫ Inserts a resistor between neutral and ground
 ▫ Dramatically reduces risk of Electrocution
 ▫ Eliminates approximately 95% of Arc Flash / Blast Injuries
High Resistance Grounding

Intentionally grounded through neutral resistor
High Resistance Grounding

• Advantages
 ▫ Eliminates overvoltage transients
 ▫ Allows faulted circuit to continue operation

• Disadvantages
 ▫ Potential for nuisance alarming
 ▫ Maintenance personnel may ignore first fault
What if no neutral exists?

Can HRG be used on Delta connected systems?

- A grounding transformer is installed (either a zig-zag or a wye-delta) from all three phases to create an artificial neutral for grounding purposes only.
In a ground fault, which is the path of least resistance?
System Charging Current

• Only discharges if $R_o < X_{co}$, so $I_r > I_{xco}$ (per IEEE142-1991 1.4.3)

 ▫ That is, resistor current must be greater than capacitive charging current.

 ▫ ‘Rule of thumb’ for 480V system

<table>
<thead>
<tr>
<th>Transformer (kVA)</th>
<th>Charging Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.2 - 0.6</td>
</tr>
<tr>
<td>1500</td>
<td>0.3 - 0.9</td>
</tr>
<tr>
<td>2000</td>
<td>0.4 - 1.2</td>
</tr>
<tr>
<td>2500</td>
<td>0.5 - 1.5</td>
</tr>
</tbody>
</table>
Estimating Charging Current

TABLE II

I_C DATA FOR ESTIMATING SYSTEM CHARGING CURRENT

<table>
<thead>
<tr>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8kV</td>
</tr>
</tbody>
</table>
| Surge Capacitors | 2.25 A Each Set
| Cable 1000 MCM Shielded | 1.15 A/1000 ft. of 3c
| 750 MCM Shielded | .93 A/1000 ft. of 3c
| 350 MCM Shielded | .71 A/1000 ft. of 3c
| 4/0 MCM Shielded | .65 A/1000 ft. of 3c
| 2/0 MCM Shielded | .55 A/1000 ft. of 3c
| Transformer - negligible |
| Motors | .15 A/1000 HP

<table>
<thead>
<tr>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.16kV</td>
</tr>
</tbody>
</table>
| Surge Capacitors | 1.3 A Each Set
| Vulkene Cable-Shielded |
| #1 to 350 MCM | .23 A/1000 ft. of 3c
| Vulkene Cable-Non-Shielded |
| in conduit | .1 A/1000 ft. of 3c
| Transformers - negligible |
| Motors - Est. | .05 A/1000 HP

<table>
<thead>
<tr>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4kV</td>
</tr>
</tbody>
</table>
| Surge Capacitors | 0.75 A Each Set
| Cables-Non-Shielded in Conduit - Est. |
| Motors | .05 A/1000 ft. of 3c
| Motors with Cables (tested) | .03 A/1000 HP

<table>
<thead>
<tr>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>480V</td>
</tr>
</tbody>
</table>
| Surge Capacitors (seldom used) | 1/3 A Each Set
| Cables 350 to 500 MCM in Conduit | .10 A/1000 ft. of 3c
| 2/0 to 3/0 MCM in Conduit | .05 A/1000 ft. of 3c
| 2/0 to 3/0 MCM in Trays | .02 A/1000 ft. of 3c
| #6-3/c with Ground Wires in Water |
| Transformers - negligible |
| Motors | .01 A/1000 HP

Cheat Code #2

- Resistance increases as resistor heats up
- Cheaper stainless steel alloys may produce undesirable results

<table>
<thead>
<tr>
<th>Resistance change per degree C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel chromium</td>
</tr>
<tr>
<td>18SR/1JR SS</td>
</tr>
<tr>
<td>304SS</td>
</tr>
</tbody>
</table>
Fault Location

• Operator controlled contactor connected across half the grounding resistor

• When activated, contactor alternately shorts half the resistor and forces the current to double

• Possible to use ammeter to track the current fluctuation
NOTE: Tracking a ground fault can only be done on an energized system. Due to the inherent risk of electrocution this should only be performed by trained and competent personnel. Appropriate PPE measures should be taken into consideration as well.
Fault Location

- Method to quickly locate ground faults.

Meter reading will alternate from 5A to 10A every 2 seconds.
Design Considerations with HRG Systems

Very few potential hazards with HRG, however...

• Elevated Voltages
 • Trained Personnel
 • Cables, TVSSs, VFDs Insulation

• Line-to-Neutral Loads

• Loss of Ground
 • System becomes Ungrounded or Solidly Grounded introducing more Hazards
Elevated Voltage Hazard

Properly rated equipment prevents Hazards.

Maintenance must be aware of elevated voltages and method to locate fault. IF NOT, DO NOT HAVE TO MAINTAIN POWER. Allowed to trip (same as S-G) but without the hazards.
Elevated Voltage Hazard

- Properly rated equipment prevents Hazards.

Cables, TVSSs, VFDs, etc. and other equipment must be rated for elevated voltages (Ungrounded Systems).

Ground ≈ AØ
No Single Phase Loads

No line-to-neutral loads allowed, prevents Hazards.

Line-to-neutral Voltage is backfed via neutral wire, thus, not allowed.

Phase and Neutral wires in same conduit. If faulted, bypass HRG, thus, Φ-G fault.

Ground ≈ AØ
Resolve NEC requirement

Add small 1:1 transformer and solidly ground secondary for 1Φ loads (i.e. lighting).
Loss of Ground Hazard

Open Circuit:
- Desired fault current cannot flow.
- Ungrounded System.

Short Circuit:
- Undesired fault current can flow.
- Solidly Grounded System.
Resolving Hazard

- Undercurrent and undervoltage relay
 - Relies on inherent system imbalances
 - Detects Open/Short Circuits

- Ground Fault Relay & Sensing Resistor
 - Detects Open / Short Circuits
1.4.3 The reasons for limiting the current by resistance grounding may be one or more of the following.

1) To reduce burning and melting effects in faulted electric equipment, such as switchgear, transformers, cables, and rotating machines.

2) To reduce mechanical stresses in circuits and apparatus carrying fault currents.

3) To reduce electric-shock hazards to personnel caused by stray ground-fault currents in the ground return path.

4) To reduce the arc blast or flash hazard to personnel who may have accidentally caused or who happen to be in close proximity to the ground fault.
TO HRG OR NOT TO HRG?

IEEE Std 141-1993 (Red Book)
Recommended Practice for Electric Power Distribution for Industrial Plants

7.2.2 There is no arc flash hazard, as there is with solidly grounded systems, since the fault current is limited to approximately 5A.

Another benefit of high-resistance grounded systems is the limitation of ground fault current to prevent damage to equipment. High values of ground faults on solidly grounded systems can destroy the magnetic core of rotating machinery.
Objective

- Minimize the damage for internal ground faults
- Limit mechanical stress in the generator from external ground faults
- Provide a means of system ground fault detection
- Coordinate with other system/equipment requirements
Generator Grounding - IEEE

IEEE Std. 142-1991 (Green Book)

1.8.1 Discussion of Generator Characteristics

• Unlike the transformer, the three sequence reactances of a generator are not equal. The zero-sequence reactance has the lowest value, and the positive sequence reactance varies as a function of time. Thus, a generator will usually have higher initial ground-fault current than a three-phase fault current if the generator is solidly grounded. According to NEMA, the generator is required to withstand only the three-phase current level unless it is otherwise specified...

A generator can develop a significant third-harmonic voltage when loaded. A solidly grounded neutral and lack of external impedance to third harmonic current will allow flow of this third-harmonic current, whose value may approach rated current. If the winding is designed with a two-thirds pitch, this third-harmonic voltage will be suppressed but zero-sequence impedance will be lowered, increasing the ground-fault current...

Internal ground faults in solidly grounded generators can produce large fault currents. These currents can damage the laminated core, adding significantly to the time and cost of repair...Both magnitude and duration of these currents should be limited whenever possible.
• For safety of personnel and to reduce over-voltages to ground, the generator neutral is often either grounded solidly or grounded through a resistor or reactor.
• The neutral may be grounded through a resistor or reactor with no special considerations required in the generator design or selection unless the generator is to be operated in parallel with other power supplies.
• The neutral of a generator should not be solidly grounded unless the generator has been specifically designed for such operation.

IEEE Std 242-2001 (Buff Book)
12.4 Generator Grounding
Generators are not often operated ungrounded. While this approach greatly limits damage to the machine, it can produce high transient overvoltages during faults and also makes it difficult to locate the fault.
Solidly Grounded Systems

- Best suited for LV 3Ø, 4W systems
- Generator must be rated for use as solidly grounded
- System trips on first fault
- Coordinated relay scheme may be difficult
Resistance Grounding

• Best suited for 3Ø, 3W systems
• Capacitive charging current important
• Higher resistance limits damage on internal fault
Hybrid Grounding

- Low resistance grounding overcomes capacitive charging current
- After generator is isolated the LRG is removed, limiting fault current to 5 A
Paralleled Generators

- Easy if all generators are same design and pitch, always operated at equal loading and are not switched with three pole transfer switch
Generator Impedance Example

<table>
<thead>
<tr>
<th>Frame/# of brgs</th>
<th>691/2</th>
<th>692/2</th>
<th>693/2</th>
<th>695/1</th>
<th>696/1</th>
<th>697/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>Arrgt. Number</td>
<td>144-1748</td>
<td>166-2664</td>
<td>144-1754</td>
<td>166-2680</td>
<td>166-2692</td>
<td>166-2698</td>
</tr>
<tr>
<td>Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130°C Rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1250</td>
<td>1400</td>
<td>1500</td>
</tr>
<tr>
<td>kVA</td>
<td>1125</td>
<td>1250</td>
<td>1375</td>
<td>1563</td>
<td>1750</td>
<td>1875</td>
</tr>
<tr>
<td>Motor Starting Capability at 30% Voltage Dip</td>
<td>2100</td>
<td>2050</td>
<td>2477</td>
<td>3018</td>
<td>3222</td>
<td>2661</td>
</tr>
<tr>
<td>Pitch</td>
<td>0.7142</td>
<td>0.7142</td>
<td>0.7222</td>
<td>0.7333</td>
<td>0.6666</td>
<td>0.7333</td>
</tr>
<tr>
<td>Efficiency (% 100%)</td>
<td>94.4</td>
<td>94.4</td>
<td>95</td>
<td>95.4</td>
<td>95.7</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>94.8</td>
<td>94.9</td>
<td>95.4</td>
<td>95.7</td>
<td>96.0</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td>94.7</td>
<td>94.9</td>
<td>95.2</td>
<td>95.5</td>
<td>95.8</td>
<td>96.0</td>
</tr>
<tr>
<td>Reactances (per unit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtransient Direct Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X'f'd</td>
<td>0.1723</td>
<td>0.1988</td>
<td>0.179</td>
<td>0.1662</td>
<td>0.1783</td>
<td>0.2346</td>
</tr>
<tr>
<td>Subtransient Quadrature Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X'f'q</td>
<td>0.2027</td>
<td>0.233</td>
<td>0.2174</td>
<td>0.2027</td>
<td>0.2209</td>
<td>0.292</td>
</tr>
<tr>
<td>Transient Saturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X'd</td>
<td>0.2492</td>
<td>0.2833</td>
<td>0.2583</td>
<td>0.2405</td>
<td>0.2529</td>
<td>0.3273</td>
</tr>
<tr>
<td>Synchronous Direct Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xd</td>
<td>3.522</td>
<td>3.89</td>
<td>3.6277</td>
<td>3.4137</td>
<td>3.4743</td>
<td>4.4266</td>
</tr>
<tr>
<td>Synchronous Quadrature Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xq</td>
<td>1.7443</td>
<td>1.9287</td>
<td>1.7979</td>
<td>1.6941</td>
<td>1.7266</td>
<td>2.2033</td>
</tr>
<tr>
<td>Negative Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>0.1875</td>
<td>0.2159</td>
<td>0.1982</td>
<td>0.1845</td>
<td>0.1996</td>
<td>0.2633</td>
</tr>
<tr>
<td>Zero Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xo</td>
<td>0.0328</td>
<td>0.0367</td>
<td>0.0413</td>
<td>0.0482</td>
<td>0.004</td>
<td>0.0681</td>
</tr>
</tbody>
</table>
Separate Grounding Resistors

- Separately grounding prevents circulating 3rd harmonic current
- Must have means of disconnecting neutral if generator is being serviced
- Multiple NGR’s has cumulative effect on ground fault current
Common Grounding Path

• Fault current constant
• Requires disconnect in each neutral for service
• Path for circulating 3rd harmonic currents
• Not protected against faults in stator windings

• Fault current constant
• Generators safe to service
• No path for circulating 3rd harmonic currents
• Generators ungrounded until synchronized and connected
Hybrid Grounding

A neutral deriving transformer holds the fault current on the main bus to a consistent 400 amps. Each generator is protected by HRG.
Recommendation

• Solidly ground only at LV when generator permits, loads are non-critical and primarily single phase
• HRG at LV
• LRG combined with HRG at MV or where charging current is excessive
Benefits of Grounding

<table>
<thead>
<tr>
<th>Productivity Impact</th>
<th>System Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ungrounded System</td>
</tr>
<tr>
<td>Equipment Damage</td>
<td></td>
</tr>
<tr>
<td>Overvoltages</td>
<td>Severe</td>
</tr>
<tr>
<td>Overcurrent - Damage at point of fault</td>
<td>Unknown</td>
</tr>
<tr>
<td>Maintenance Costs</td>
<td>High</td>
</tr>
<tr>
<td>Downtime</td>
<td></td>
</tr>
<tr>
<td>Continuous Operation with Ground Fault</td>
<td>Possible but not recommended</td>
</tr>
<tr>
<td>Relay Co-ordination (Appropriate Equipment Tripped, Ease of fault location)</td>
<td>Difficult</td>
</tr>
<tr>
<td>Personnel</td>
<td>Poor</td>
</tr>
</tbody>
</table>

- Overvoltages: Severe, None, Limited, Limited
- Overcurrent - Damage at point of fault: Unknown, Severe, Minimal, None
- Maintenance Costs: High, Reasonable, Reasonable, Low
- Continuous Operation with Ground Fault: Possible but not recommended, Not possible, Not possible, Ideal
- Relay Co-ordination (Appropriate Equipment Tripped, Ease of fault location): Difficult, Difficult, Good, Excellent
- Personnel Safety to Personnel: Poor, Good, Good, Excellent
Second Half Agenda

• Equipment Grounding
 ▫ Ground Systems and GEC
 ▫ Bonding
 ▫ Component Grounding
 ▫ Ground Fault Protection

• Substation
 ▫ Criteria for Ground Grid Design
 ▫ Designing Safe and Effective Ground Systems
 • Soil
 • System
 • Conductors
 • Arrangement
Significant Domestic Codes and Standards

• NFPA 70 – National Electrical Code
 ▫ General grounding provisions
 ▫ Certain definitions
• ANSI C2 – National Electric Safety Code
 ▫ General grounding provisions for electric supply stations
 ▫ System Grounding
 ▫ Equipment Grounding
 ▫ Static and Lightning Protection Grounding
 ▫ Connection to Earth
 ▫ Electronic Equipment Grounding
Equipment Grounding

• System Grounding – Part 1
 ▫ Includes Grounded Conductor

• Equipment Grounding – Part 2
 ▫ Includes GEC and bonding/grounding of system components
 ▫ GEC required for HRG, LRG and solidly grounded systems
Objectives of Equipment Grounding

- To reduced shock hazard to personnel

- To provide adequate current carrying capability (impedance and duration) to handle ground fault current w/o fire or hazard

- To provide a low-impedance return path for ground fault current to ensure operation of overcurrent device
Equipment Grounding Requirements

- Conductive Materials enclosing conductors or equipment (e.g. conduit, motor frames) shall be connected to earth to limit voltage to ground on these items. These shall be:
 - Connected together (bonded)
 - Connected to the grounded conductor
- For LRG or HRG or ungrounded systems, these items must still be bonded together
- Earth cannot be sole EGC or fault current path
Grounding Electrode Conductor (GEC)

- Defined in NEC as “The conductive path installed to connect normally non-current-carrying metal parts of equipment together and to the system grounded conductor or the grounding electrode conductor, or both.”

- Characteristics:
 - Copper or corrosion resistant material
 - Accessible (generally)
 - Sized per NEC Table 250.66
System Bonding Jumper

- Defined in NEC as “The connection between the grounded circuit conductor and the equipment grounding conductor at a separately derived system.”
- Differs from main bonding jumper because main jumper is specific to service
- Characteristics:
 - Copper or corrosion resistant material
 - Accessible (generally)
 - Unspliced
 - Wire, bus or screw
 - Sized per NEC 250.28D, based on phase conductor size - See Table 250.66
GEC and Bonding Jumper

Exhibit 250.13 A grounding arrangement for a separately derived system in which the grounding electrode conductor connection is made at the transformer.

Exhibit 250.14 A grounding arrangement for a separately derived system in which the grounding electrode conductor connection is made at the first disconnecting means.

Exhibit 250.21 Schematic diagram of a high-impedance grounded neutral system.
Grounding Electrode System

- All of the following present at a building or structure served shall be bonded together:
 - Metal Underground Water Pipe
 - Metal Frame of the Building or Structure
 - Concrete Encased Electrode
 - Ground Ring
 - Rod and Pipe Electrodes
 - Other Listed Electrodes
 - Plate Electrodes
Grounding Electrode System

Exhibit 250.22: A grounding electrode system that uses the metal frame of a building, a ground ring, a concrete-encased electrode, a metal underground water pipe, and a ground rod.
Bonding

• Bonded, per NEC: Connected to establish electrical continuity and conductivity

• NEC gives bonding requirements
 ▫ Metal raceways, trays, cable armor, enclosures, etc. and other non-current carrying metal parts shall be bonded

• NEC gives acceptable bonding means
 ▫ Threaded couplings or bosses
 ▫ Threadless couplings where made up tight for raceways
 ▫ Other listed devices such as bonding locknuts, bushings or bushings with jumpers
Equipment Grounding Conductor

- NEC 250.110 sets forth criteria by which exposed, non-current-carrying metal parts shall be connected to an equipment grounding conductor:
 - Where 8’ vertically or 5’ horizontally of ground or grounded metal objects in reach
 - Where in wet or damp location and not isolated
 - Where in contact with metal
 - Where in classified locations
 - Where supplied by metallic raceway or wiring with EGC
 - For any equipment with a terminal of more than 150 V to ground
Equipment Grounding Conductor

- Types of EGC are given in NEC article 250.118
 - Copper or Al wire
 - RMC
 - IMC
 - EMT
 - Listed Flex (with conditions)
 - Listed Liquidtight Flex (with conditions)
 - Type AC cable
 - Mineral Insulated Cable
 - Type MC cable
 - Cable tray (with conditions)
 - Cablebus framework (with conditions)
 - Other raceways (e.g. listed gutters)
EGC Identification

• EGC can be bare, covered or insulated
 ▫ Insulation must be green or green with one or more yellow stripes
 ▫ Green or green with yellow stripes are not permitted to be used for ungrounded or grounded conductors

• Conductor #6 or larger, or conductors in multi-conductor cable can be reidentified by:
 ▫ Stripping insulation
 ▫ Coloring exposed portions green
 ▫ Marking exposed insulation with green tape or adhesive labels
Size of EGC

• Refer to NEC table 250.122
 ▫ Size based on overcurrent protection
 ▫ Never must be larger than circuit conductor
 ▫ Where a single EGC is run with multiple circuits in same raceway, cable or tray, it shall be sized based on the largest OC device
 ▫ For parallel cables, EGC must be run with both sets, with each sized per 250.122
Methods of Equipment Grounding

• For grounded systems, the connection shall be made by bonding the EGC to the grounded service conductor and the GEC

• For fixed equipment connected with permanent wiring, EGC shall be routed with circuit conductors
Unit Substations

- Much more simple than outdoor, open-frame substations (lots more on that later)
 - Voltage gradients are typically not a significant problem
 - Generally dealing with a metal-enclosed package, all bonded together
 - All grounding circuits to and from unit substation must be properly connected
 - Use of impedance grounding greatly reduces risk to personnel
Unit Substations with Transformers

- Unique problems because two systems are present
 - Must have EGC running back to line-side source
 - Secondary is separately-derived system and is subject to all rules (recall system grounding, GEC, system bonding jumper, etc.)
- Line-side and load side systems are interconnected due to EGC requirements but are functionally separate
Utilization Equipment

Figure 2-14: Typical supply conductor patterns of power circuits of grounding and grounded conductors of fixed equipment.
Ground Fault Protection

• Use of phase overcurrent devices is not ideal
 ▫ Can produce less current than device rating thus trip times can be extremely long (e.g. fuse) with LRG system
 ▫ Ground faults often are arcing and are intermittent in nature not allowing thermal elements to operate quickly
• Separate ground fault protection is recommended
Ground Fault Sensing

Figure 2.13 - Ground-fault sensing
Substation Grounding Outline

• Part 1—Criteria for Ground Grid Design
 ▫ Applicable Codes, Standards and Guides
 ▫ Safety Criteria and Exposure Mechanisms
• Part 2—Designing Safe and Effective Ground Systems
 ▫ General Criteria
 ▫ Soil Parameters
 ▫ System Parameters
• Part 3—Designing Safe and Effective Ground Systems
 ▫ Conductor Properties
• Part 4—Designing Safe and Effective Ground Systems
 ▫ Grounding System Arrangement
 ▫ Computer Simulation
 ▫ Problem Areas
 ▫ Testing
Significant Domestic Codes and Standards

- NFPA 70 – National Electrical Code
 - General grounding provisions
 - Certain definitions
 - General grounding provisions for electric supply stations
- IEEE 837 – IEEE Standard for Qualifying Permanent Connections Used in Substation Grounding
 - Specific to connectors
 - Written in procedure form
 - Comprehensive and Absolutely Indispensable
Hazardous Conditions

• Shock
 ▫ Not necessarily caused by contact with an intentionally energized object (that’s what insulation is for)
 ▫ Caused by potential gradients
 ▫ Requires the following simultaneous conditions
 • Current, typically high in relation to the grounding area and resistance
 • Current distribution through soil resistance causing gradients at earth’s surface
 • Absence of insulating material that could mitigate current flow through the body
 • Duration of contact and fault sufficient to develop harmful current flow through the body
 • Bad luck - Presence of human at wrong place at the wrong time, bridging two points of potential difference caused by the above items
Current Return Paths

Figure (a): \(I_F = I_G \)
Total fault current returns through ground

Figure (b): \(I_F = I_G + I_e \)
Fault current splits
Specific Susceptibility

- Physiological Effects of Electric Current
 - As current increases, the following effects occur
 - 1 mA: threshold of perception
 - 1 to 6 mA: let-go current – unpleasant but can be released
 - 9 – 25 mA: pain and hard to release; may require secondary treatment
 - 60 – 100 mA: highly dangerous; ventricle fibrillation, stoppage of cardio-pulmonary system; immediate treatment required

- Fibrillation Current is the Criterion on Which Analysis is Based
Determining Body Current Limits

- Depends on Current and Time (Energy absorbed)
 - The energy absorbed by the body is expressed as follows:
 \[S_B = (I_B)^2 \cdot t_s \]
 where:
 - \(I_B \) is the exposure current (rms amperes)
 - \(t_s \) is the exposure duration (seconds)
 - \(S_B \) is an empirical constant related to tolerable shock energy
 - Further, research indicates that 99.5% of all persons can withstand current as expressed below without suffering ventricular fibrillation:
 \[I_B = \frac{k}{\sqrt{t_s}} \]
 where:
 - \(k \) is the square root of \(S_B \)
Current vs. Time

• Alternate Analysis
 ▫ Biegelmier’s Curve

• Summary
 ▫ Eat, drink, survive shocks better
Don’t Try to Resist It

• For 50 and 60 Hz Currents the Human Body is Approximated as a Resistor
 ▫ Current path assumptions
 • One hand to both feet
 • One foot to the other
 ▫ Resistance (from experimental data)
 • Body resistance is 300 Ω
 • Body resistance including skin is 500 Ω to 3000 Ω
• IEEE 80 Makes the Following Critical Assumptions
 ▫ Hand and foot contact resistance is equal to zero
 ▫ Glove and shoe resistance are equal to zero
 ▫ R_B (resistance of a human body) = 1000 Ω for:
 • Hand-to-hand
 • Hand-to-feet
 • Foot-to-foot
Body Current Paths

- Hand-to-Hand
 - Vital organs (heart) exposed

- Hand-to-Foot
 - Vital organs (heart) exposed

- Foot-to-Foot
 - Vital organs not specifically exposed
 - Depends on one’s definition of “Vital”
 - Takes 25 times more current to produce same heart current

- Despite the above, IEEE 80 recommends:
 - Use of 1000 Ω for all calculations (conservative)
 - Person could fall into energized equipment
 - Person could be resting in prone position
For the next few slides:

- R_A is the total effective resistance of the accidental circuit in Ω
- V_A is the total effective voltage (step or touch) of the accidental circuit
- I_B is tolerable body current from previous
- U, Z and I_f are system parameters
- Terminal H is a point in system at same potential as grid
- R_B is resistance of body
- I_b is the body current in A, flows from H to F through the unfortunate individual
Touch Voltage Criteria

Figure 7—Impedances to touch voltage circuit

Figure 8—Touch voltage circuit

\[V_{Th} = \text{Touch voltage} \]

\[Z_{Th} = \frac{R_f}{2} \]
Step Voltage Criteria

![Step Voltage Diagram]

Figure 9—Exposure to step voltage

Figure 10—Step voltage circuit

\[V_{Th} = \text{Step voltage} \]

\[Z_{Th} = 2R_f \]

\[R_B = \text{Body Resistance} \]
Putting it All Together

- The maximum driving voltages of the accidental step circuits are:

 \[E_{\text{step}} = (R_B + 2R_f)I_B \]

 For a 50 kg body weight –

 \[E_{\text{step}50} = (1000 + 6C_s \cdot \rho_s) \frac{0.116}{\sqrt{t_s}} \]

 For a 70 kg body weight –

 \[E_{\text{step}70} = (1000 + 6C_s \cdot \rho_s) \frac{0.157}{\sqrt{t_s}} \]

 \(E_{\text{step}} \) is the step voltage in V
 \(E_{\text{touch}} \) is the touch voltage in V
 \(C_s \) is the surface layer derating factor
 \(R_s \) is the resistivity of the surface in \(\Omega \cdot \text{m} \)
 \(t_s \) is the duration of the shock in seconds

- The maximum driving voltages of the accidental touch circuits are:

 \[E_{\text{touch}} = (R_B + \frac{R_f}{2})I_B \]

 For a 50 kg body weight –

 \[E_{\text{touch}50} = (1000 + 1.5C_s \cdot \rho_s) \frac{0.116}{\sqrt{t_s}} \]

 For a 70 kg body weight –

 \[E_{\text{touch}70} = (1000 + 1.5C_s \cdot \rho_s) \frac{0.157}{\sqrt{t_s}} \]
Shocking Situations

Figure 12—Basic shock situations
Transferred Potential

Figure 13—Typical situation of extended transferred potential
Designing Safe Grounding Systems

- The Ground System Must
 - Assure continuity of service
 - Limit the effects of potential gradients to safe levels under normal and fault conditions
 - Limit voltage imposed by lightning, line surges or unintentional contact with higher voltage lines
 - Stabilize the voltage to earth during normal operation
 - Provide an effective ground fault current path
Select Definitions

- **Ground Potential Rise (GPR)** – The maximum electrical potential that a substation grounding grid may attain relative to a distant point assumed to be remote earth.
 - GPR = grid resistance x maximum grid current
 - Safety not necessarily dependant on GPR; a safe system could have a high GPR with low gradients

- **Step Voltage** – The difference in surface potential experienced by a person bridging a distance of 1 meter with the feet without contacting any grounded object

- **Touch Voltage** – The potential difference between the GPR and the surface potential where a person is standing with one hand on a grounded surface
Select Definitions Continued

• Metal-to-Metal Touch Voltage – The potential difference between metallic objects within the substation site that may be bridged by direct contact
 ▫ Assumed negligible in conventional substations if both items are tied to the grid
 ▫ Could be substantial with contact between grounded and ungrounded object such as an isolated fence, water pipe or rail line

• Transferred Voltage – Special case where a voltage is transferred into or out of a substation

• Touch Voltage – The potential difference between the GPR and the surface potential where a person is standing with one hand on a grounded surface
Information for Modeling

- Soil Parameters
- System Parameters
- Conductor Properties
- Ground System Arrangement (iterative)
Soil Parameters

- Soil Behaves as Resistance and Dielectric
 - Dielectric effect can be ignored except for high-frequency waves
 - Can be modeled as pure resistance
 - Conductivity is generally electrolytic
 - Resistivity affected by a number of factors, here is graph of a typical sandy loam soil:

![Graph of a typical sandy loam soil](image)

Figure 18—Effects of moisture, temperature, and salt upon soil resistivity
Surfacing

- Proper Surfacing is Extremely Valuable
 - Typically 3 to 6 inches thick
 - Helps eliminate soil dryout
 - Reduces shock current
 - Decreases ratio of body to short circuit current by 10 to 20 times, depending on surfacing resistivity
 - Resistivity is often provided by surfacing supplier or determined by tested
 - Typical values are indicated on next page
Surfacing

<table>
<thead>
<tr>
<th>Description</th>
<th>Ω·m Dry</th>
<th>Ω·m Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crusher run granite (NC)</td>
<td>140 x 10^6</td>
<td>1,300</td>
</tr>
<tr>
<td>1.5” Crusher run granite with fines (GA)</td>
<td>4000</td>
<td>1,200</td>
</tr>
<tr>
<td>3/4 - 1” Granite with fines (CA)</td>
<td>-</td>
<td>6,513</td>
</tr>
<tr>
<td>#4 Washed granite (GA)</td>
<td>1.5 to 4.5 x 10^6</td>
<td>5,000</td>
</tr>
<tr>
<td>#3 Washed granite (GA)</td>
<td>2.6 to 3 x 10^6</td>
<td>100,000</td>
</tr>
<tr>
<td>Washed limestone (MI)</td>
<td>7 x 10^6</td>
<td>2,000 to 3,000</td>
</tr>
<tr>
<td>Washed granite, similar to .75” gravel</td>
<td>2 x 10^6</td>
<td>10,000</td>
</tr>
<tr>
<td>Washed granite, similar to pea gravel</td>
<td>40 x 10^6</td>
<td>5,000</td>
</tr>
<tr>
<td>#57 Washed granite (NC)</td>
<td>190 x 10^6</td>
<td>8000</td>
</tr>
<tr>
<td>Asphalt</td>
<td>2 to 30 x 10^6</td>
<td>.1 to 6 x 10^6</td>
</tr>
<tr>
<td>Concrete (oven dried, air cured is lower)</td>
<td>1 to 1,000 x 10^6</td>
<td>21 to 100</td>
</tr>
</tbody>
</table>
Modeling Soil

• Three Methods Exist

 ▫ Uniform soil model
 • Calculations assume uniform soil
 • Requires homogeneous soil which is rare
 • Highly inaccurate for small grids where influence of top layer resistivity is more pronounced

 ▫ Two-layer soil model
 • Uses upper soil layer of finite depth with specified resistivity
 • Includes lower soil with specified resistivity and infinite depth

 ▫ Multilayer soil model
 • Uses more than two soil layers with different resistivities
 • Only required under circumstances not normally encountered
Bad Soil

• Some Solutions for High Resistivity Soil
 ▫ Effectively increase the diameter of the conductors
 • The soil closest to the electrode comprises the bulk of the electrode ground resistance
 ▫ Available methods
 • Use of salts such as sodium chloride, calcium chloride to treat soil around conductors
 • May need to be replenished
 • May be prohibited
 • Use of bentonite around conductors
 • Hygroscopic
 • Resistivity of 2.5 Ω·m when wet
Bad Soil Continued

- Use of chemical electrodes
 - Porous copper tube filled with salt
 - Crammed in augured hole then back-filled

- Use of grounding enhancement material
 - Very low resistivity (5% of bentonite)
 - Contains aluminum silicates, carbon, quartz and cements
 - Claims of permanence and dry performance
Concrete and Steel

- Concrete-Encased (Ufer) Electrodes:
 - Lower Resistance
 - Wire or rod in concrete has lower resistance than when directly buried
 - Can corrode
 - Small DC currents can cause re-bar corrosion
 - Corroded re-bar can expand by 2.2X and damage footings
 - IEEE 80 gives a formula and a chart for predicting DC for various soil conditions

- Are required by NEC?
 - Yes, for any “building or structure served”
 - 2005 NEC didn’t really change anything
 - Replaced “if available on premises...” with “all that are present”
 - Language changed to clarify intent
Concrete and Steel

- What About My Substation?
 - Is the facility served? Check definition in NEC.
 - Ultimately it is up to the authority having jurisdiction.
 - The intent of the NEC passage is bonding of all present grounding to form a system.
 - In my view, the intent of passage is indicated to right:

250.52(A)(1) Metal Underground Water Pipe
250.52(A)(2) Metal Frame of the Building or Structure
250.52(A)(3) Concrete-Encased Electrode
250.52(A)(4) Ground Ring
250.52(A)(5) Rod and Pipe Electrodes
250.52(A)(6) Plate Electrodes
Concrete and Steel

- IEEE 80
 - Gives equations and methodology for determining resistance of concrete encased electrode (typically a rod enclosed in a cylinder)
 - Recommends the following
 - Connect anchor bolt and angle stubs to the re-bar
 - Reduce current duty and dc leakage by making sure primary electrodes carry bulk of current
 - Use ground enhancement material in high resistivity soil around primary electrodes
Information for Modelling

- Soil Parameters
- System Parameters
- Conductor Properties
- Ground System Arrangement (iterative)
Determining Maximum Grid Current I_G

- Determine Type and Location of Worst-Case Fault
- Define Current Division Factor S_f
 - Define I_g
- Determine, for Each Fault, the Decrement Factor D_f
- Select the Largest Product of $D_f \times I_g$

\[
I_g = S_f \times I_f
\]

\[
S_f = \frac{I_g}{3I_0}
\]

\[
I_G = D_f \times I_g
\]

- Where:
 - S_f is the fault current division factor
 - I_f is the rms symm. Ground fault current in A
 - I_g is the rms symm. grid current in A
 - I_o is the zero-sequence system fault current in A
 - I_G is the maximum grid current in A for a fault duration t_f
 - D_f is the decrement factor in s
Assessing Type and Location of Fault

Figure 28—Fault within local substation; local neutral grounded

Figure 29—Fault within local substation; neutral grounded at remote location

Figure 30—Fault in substation; system grounded at local substation and also at other points
Information for Modelling

• Soil Parameters
• System Parameters
• Conductor Properties
• Ground System Arrangement (iterative)
Selecting Grounding Components

• Grounding Materials Must:
 ▫ Have sufficient conductivity - determined by grounding calculations
 ▫ Resist fusing and mechanical deterioration during faults
 ▫ Be mechanically reliable and rugged
 ▫ Be able to maintain function when exposed to corrosion or abuse
Selecting Materials

- Typical Materials
 - Copper
 - Used for conductors and electrodes
 - Excellent conductivity
 - Resistant to underground corrosion; cathodic
 - Can contribute to corrosion of other buried objects, particularly steel (forms galvanic cell)
 - Copper-Clad Steel
 - Used for rods, typically
 - Strong, can be driven
 - Theft resistant
 - Similar cathodic properties to copper
 - Aluminum
 - Rarely used
 - Not corrosion resistant; anodic
 - Not suitable for underground application per ANSI C2
 - Steel
 - Infrequently used for conductors and electrodes
 - Should be galvanized
 - May need cathodic protection
More on Sizing

- IEEE 80 Containing Charts for the Variables Based On Conductor Type
 From these charts, it can be determined that:

\[A_{kcmil} = I \cdot K_f \sqrt{t_c} \]

Where:
- \(A_{kcmil} \) is the area of the conductor
- \(t_c \) is the duration of current in s
- \(K_f \) is a constant from Table 2 in IEEE 80 at various values of \(T_m \) (see next)
Material Constants

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity (%)</th>
<th>T_m</th>
<th>K_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, annealed soft-drawn</td>
<td>100.0</td>
<td>1083</td>
<td>7.00</td>
</tr>
<tr>
<td>Copper, commercial hard-drawn†</td>
<td>97.0</td>
<td>1084</td>
<td>7.06</td>
</tr>
<tr>
<td>Copper, commercial hard drawn†</td>
<td>97.0</td>
<td>250</td>
<td>11.78</td>
</tr>
<tr>
<td>Copper-clad steel wire†</td>
<td>40.0</td>
<td>1084</td>
<td>10.45</td>
</tr>
<tr>
<td>Copper-clad steel wire†</td>
<td>30.0</td>
<td>1084</td>
<td>12.06</td>
</tr>
<tr>
<td>Copper-clad steel rod</td>
<td>20.0</td>
<td>1084</td>
<td>14.64</td>
</tr>
<tr>
<td>Aluminum EC grade</td>
<td>61.0</td>
<td>657</td>
<td>12.12</td>
</tr>
<tr>
<td>Aluminum 5005 Alloy</td>
<td>53.5</td>
<td>652</td>
<td>12.41</td>
</tr>
<tr>
<td>Aluminum 6201 Alloy</td>
<td>52.5</td>
<td>654</td>
<td>12.47</td>
</tr>
<tr>
<td>Aluminum-clad steel wire</td>
<td>20.3</td>
<td>657</td>
<td>17.20</td>
</tr>
<tr>
<td>Steel 1020</td>
<td>10.8</td>
<td>1510</td>
<td>15.95</td>
</tr>
<tr>
<td>Stainless clad steel rod</td>
<td>9.8</td>
<td>1400</td>
<td>14.72</td>
</tr>
<tr>
<td>Zinc-coated steel rod</td>
<td>8.6</td>
<td>419</td>
<td>28.96</td>
</tr>
<tr>
<td>Stainless steel 304</td>
<td>2.4</td>
<td>1400</td>
<td>30.05</td>
</tr>
</tbody>
</table>

†Different alloys as shown in Table 2 of IEEE 80
Connections

• Connections Are Critical Components of the Grounding System
 ▫ Should meet the general requirements set forth for conductors
 • Conductivity
 • Corrosion resistance
 • Current carrying capacity
 • Mechanical strength
 • Withstand faults
 • Heating
 • Magnetic Forces

• IEEE 837 Provides Testing Guidelines for Grounding Connections
Types of Connectors

• Typical Connector Types
 ▫ Compression
 ▫ Exothermic
 ▫ Mechanical

• Some Considerations
 ▫ Will this need to be removed?
 ▫ Does my connector need to be tested per IEEE 837?
 ▫ Are special permits or precautions required at the site?
 ▫ Where is the connection going to be located?
Connections

- Compression
 - Typically applied with portable hydraulic compression tool
 - Wide applicability, e.g.
 - Cable to cable
 - Cable to rod or re-bar
 - Cable to terminal
 - Can be used
 - Above grade
 - Below grade
 - In concrete
 - Irreversible
 - Manufacturer’s tout
 - Safety versus exothermic
 - Strength
 - Conductivity
 - Irreversibility
Connections

- Exothermic
 - Installed using mold (graphite for multi-use, ceramic for single use), weld powder (shot) and a flint igniter
 - Wide applicability, e.g.
 - Cable to cable
 - Cable to rod or re-bar
 - Cable to virtually anything
 - Locations
 - Above grade
 - Below grade
 - In concrete
- Irreversible
- Manufacturer’s tout
 - Strength
 - Conductivity
 - Irreversibility
- Some stalwart compression manufacturers now make exothermic products
- Some plants require hot work permit – releases energy
Connections

• Mechanical
 ▫ Bolted, typically copper or bronze fittings, often tin plated
 ▫ Varied applicability:
 • Cable to cable
 • Cable to rod or re-bar
 • Locations
 • Above grade
 • Below grade
 • In concrete
 ▫ Reversible
 ▫ Manufacturer’s tout
 • Ease of installation
 • Conductivity
 • Irreversibility
The IEEE 80 Twelve-Step Method

1. Determine Area From Layout, Determine Soil Resistivity
2. Determine Minimum Conductor Size
3. Calculate Tolerable Step and Touch Potential
4. Lay Out Preliminary Substation Grid, Loop Around Yard, Sufficient Equipment Taps
5. Determine Preliminary Resistance of Grounding System
6. Determine Grid Current
7. Determine GPR. If Less than Tolerable Touch Voltage, Done. Otherwise:
 8. Calculate Mesh and Step Voltages.
 9. If Mesh Voltage is Below Tolerable Touch Voltage, Done. Otherwise:
 10. Check Step Voltage. If Below Tolerable Level, Done. Otherwise:
 11. Revise Grid.
Information for Modelling

- Soil Parameters
- System Parameters
- Conductor Properties
- Ground System Arrangement (iterative)
Sample Grid
Initial Grid
It Didn’t Work (As Expected)

![GRD Analysis Alert View for GRD1](image)

<table>
<thead>
<tr>
<th>Result Summary</th>
<th>Calculated Volts</th>
<th>Tolerable Volts</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch</td>
<td>2092.1</td>
<td>1431.3</td>
<td>X: 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y: 6.99 ft</td>
</tr>
<tr>
<td>Step</td>
<td>1817.1</td>
<td>4624.9</td>
<td>X: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y: 0 ft</td>
</tr>
<tr>
<td>GPR</td>
<td>7734.9</td>
<td>Volts</td>
<td>Rg: 0.17 Ohm</td>
</tr>
</tbody>
</table>

Alarm & Warnings
The maximum Touch Voltage exceeds the tolerable limits

[Close] [Help]
How Do I Fix It? - Examine Profile
Enhance Design

• Numerous Areas Over Touch Limit
• What Can Be Done?
 ▫ Relaying can be modified to clear faults more quickly
 ▫ A more accurate value for S_f can be determined
 ▫ Rods can be added or lengthened
 ▫ Conductor can be added
 ▫ GEM can be added
 ▫ Grid depth can be adjusted
• What Can Be Done for This Grid?
 ▫ Solution based on experience and feel
 ▫ The lower soil is less resistive in this case so let’s add rods
 ▫ The sub is small so it is understood that grid spacing will be tight so we could add copper
 ▫ S_f can be adjusted. This sub is connected with two static wires. Transformers have delta primaries.
New Grid
Success! Imagine Doing it By Hand
(modified arrangement and used 70 kG criterion)
Finished
Same Grid, 50 kG Criterion

GRD Analysis Alert View for GRD1

<table>
<thead>
<tr>
<th>Result Summary</th>
<th>Calculated Volts</th>
<th>Tolerable Volts</th>
<th>Location X</th>
<th>Location Y</th>
<th>GPR Volts</th>
<th>Rg Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch</td>
<td>1898.5</td>
<td>1431.3</td>
<td>6.9</td>
<td>6.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>1581.5</td>
<td>4624.9</td>
<td>112</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alarm & Warnings

- The maximum Touch Voltage exceeds the tolerable limits.
Same Grid with 2’ Surfacing
Same Grid with 20’ Ground Rods

<table>
<thead>
<tr>
<th>Result Summary</th>
<th>Calculated Volts</th>
<th>Tolerable Volts</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch</td>
<td>822.2</td>
<td>1431.3</td>
<td>X: 6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y: 99.94</td>
</tr>
<tr>
<td>Step</td>
<td>1298.7</td>
<td>4624.9</td>
<td>X: 112.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y: 106</td>
</tr>
<tr>
<td>GPR</td>
<td>5919.4</td>
<td></td>
<td>Rg: 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ohm</td>
</tr>
</tbody>
</table>
Possible Problems and Solutions

- **Problems**
 - Poor soil
 - Small area
 - High fault current
 - Oddly shaped grids
 - Long fault clearing time

- **Solutions**
 - More copper (grid, rods)
 - Ground enhancement material
 - Take close look at static connections
 - Faster relaying
 - Deeper grid
 - More surfacing
 - Different surfacing
 - Other methods (explosives with fill, deep well grounds)
Problem Areas

• Non “Substation” Stuff (e.g. storage areas) Within or Near Substation
 ▪ Check step and touch voltages
 ▪ Extend grid or isolate

• Disconnect Switch Handles
 ▪ Problems
 • Ionized air will be present, facilitates potential fault
 • Touch voltage hazard routinely present
 • Insulator or mechanical failure
 ▪ Possible solutions
 • Install operator platform
 • Bond platform to switch handle and grid

• Transformer Oil Containment
 ▪ Different surfacing (e.g. concrete)
 ▪ Possible solutions
 • Asphalt

• Control Building
 ▪ Problems
 • Concrete instead of rock
 • Possibly difficult to route conductors underneath
 ▪ Possible Solutions
 • Examine exposure – is touch voltage actually a problem?
 • Ground foundation and do calculations
 • Use frameless metal building on piers and extend grid under building
Fence Grounding

- Substation Fence
 - Problems
 - Serious touch voltage hazard
 - Frequently accessible to public
 - Various installation scenarios
 - Fence within grid area and connected to grid
 - Fence outside grid area and connected to grid
 - Fence outside the grid area but grounded separately
 - Fence outside grid area and grounded only through posts
 - IEEE 80 Goes Into Great Detail About Fences – Here’s the Skinny
 - Extend ground grid outside the fence (3’ works well)
 - Greatly helps with touch potential
 - If touch potential is okay, step should work
 - Install isolating sections between substation fence and other fence
 - Substation fence must be isolated from plant perimeter fence
 - Multiple isolating sections work even better
GIS Continued

- IEEE 80 Gives a Cursory Glance at GIS
 - Definitions
 - Special problems
 - Small size
 - High-frequency transients
 - Circulating Currents
 - Induced voltages from current flow in phase conductor
 - Continuous vs. non-continuous enclosures
 - Foundations
 - General Rule – Include the slab
 - Summary
 - Follow manufacturer’s instructions
Testing Ground Systems

• Defined in IEEE 81
• Compare Results to Calculated Values
• Methods of Testing
 ▫ Two-point method
 • Resistance of system and an auxiliary ground
 • Not particularly accurate
 ▫ Three-point method
 • Uses two test electrodes and one station ground
 • Inaccurate for large substations
 ▫ Staged-fault tests
 • High-current test – Inject current then measure voltage
 ▫ Fall-of-potential method
 • Measure resistance of system relative to remote electrode
 • Most widely used